Glassy Dynamics in a Model without Disorder: Spin Analog of a Structural Glass

نویسنده

  • LEI GU
چکیده

We have analyzed a non-randomly frustrated spin model which exhibits behavior remarkably similar to the phenomenology of structural glasses. The high-temperature disordered phase undergoes a strong first-order transition to a long-range ordered structure. Using Monte Carlo simulations, we have studied the behavior of the supercooled state by quenching to temperatures below this transition temperature. For a range of supercooling, the system remains ergodic and exhibits dynamics characteristic of supercooled liquids. Below a certain characteristic temperature, however, the system freezes into a “glassy” phase. In this phase, the system is non-ergodic and evolves through a distribution of traps characterized by a power-law distribution of trapping times. This change in the dynamic behavior is concurrent with the appearance of a shear instability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rheology of Soft Glassy Materials

We attribute similarities in the rheology of many soft materials (foams, emulsions, slurries, etc.) to the shared features of structural disorder and metastability. A generic model for the mesoscopic dynamics of “soft glassy matter” is introduced, with interactions represented by a mean-field noise temperature x. We find power-law fluid behavior either with sx , 1d or without s1 , x , 2d a yiel...

متن کامل

A mean-field hard-spheres model of glass

We present a model of spheres moving in a high-dimensional compact space. We relate it to a mixed matrix model with a O(N) invariant model plus a P(N) invariant perturbation. We then study the low pressure regime by performing a diagrammatic expansion of this matrix model. Finally, we show the results from numerical simulations and we present evidence for a glassy regime at high pressures. Glas...

متن کامل

Glassy Dynamics in a Frustrated Spin System: Role of Defects

In an eeort to understand the glass transition, the kinetics of a spin model with frustration but no quenched randomness has been analyzed. The phenomenology of the spin model is remarkably similar to that of structural glasses. Analysis of the model suggests that defects play a major role in dictating the the dynamics as the glass transition is approached.

متن کامل

Glassy behavior induced by geometrical frustration in a hard-core lattice-gas model

– We introduce a hard-core lattice-gas model on generalized Bethe lattices and investigate analytically and numerically its compaction behavior. If compactified slowly, the system undergoes a first-order crystallization transition. If compactified much faster, the system stays in a meta-stable liquid state and undergoes a glass transition under further compaction. We show that this behavior is ...

متن کامل

Localization and Glassy Dynamics in the Immune System

We discuss use of the generalized NK model to examine evolutionary dynamics within the immune system. We describe how randomness and diversity play key roles in the immune response and how their effects are captured by this hierarchical spin glass model. We discuss analytical aspects of the model as well as practical applications to design of the annual influenza vaccine. We discuss the subtle ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996